Ink to LaTeX

Zirui Li, Jianxiong Li, Youjia Qian, Haozhuo Liu

Motivation

$$n \cdot \log(d-1) - n \cdot \log(dmin) - d\left(\left(\sum_{i=1}^{n} \log(dx_i)\right) - \left(\sum_{i=1}^{n} \log(dmin)\right)\right)$$

Introduction

Expression Image

LaTeX Code

Calculus Math Handwriting Recognition Dataset

https://www.kaggle.com/datasets/aidapearson/ocr-data

- 100,000 images in total
- Split with 6:2:2

- Bbox
- Class
- Segmentation Mask

Dataset Preprocess

Model Outline

Stage 1: Handwriting Recognition

Need spatial relationship between characters

YOLOv8

- Anchor Free
- Predict Diverse Shapes

https://docs.ultralytics.com/tasks/detect/

Stage 1 Result

Normalized Confusion Matrix

Table 1. YOLOv8 Result on Test Dataset					
mAP50	mAP50-95	Precision	Recall		
0.98	0.95	0.99	0.98		

Stage 1 Result

Stage 2 : Composing bbox to LaTeX

Loss function

- Cross entropy loss:
$$L_{CE} = -\sum_{i=1}^{N} y_i \log(\hat{y}_i)$$

The output is a sequence of tokens from a defined vocabulary.

It measures the difference between the predicted probability distribution for each token in the vocabulary and the actual distribution

Stage 2: Composing bbox to LaTeX

The Transformer model:

Step 1: Token Embedding

N = The number of bbox E = 512 Dimension of Transformer

In order to make the model understand the spatial relationship of each character in an image...

Figure 1: The Transformer - model architecture.

Evaluation– Precision, Recall, F1-score

True/False Positives and Negatives

True Positives (TP): These are the tokens that are correctly predicted by the model.

False Positives (FP): These are the tokens that the model predicted incorrectly

False Negatives (FN): These are the tokens that the model should have predicted but did not.

Simple example

Actual LaTeX: $\lim_{y\to\infty}(y - 3)$ Model's Prediction: $\lim_{y\to\infty}(y - 2)$

True Positives (TP): These are: \\lim_, {, y, \\to, \\infty, }, \\left(,y,-,\\right) Total TP: 10 False Positives (FP): Since 2 is predicted instead of 3, it is a false positive. Total FP: 1 False Negatives (FN): The 3 was missed because 2 was predicted instead. Total FN: 1

Evaluation

V	V	Н	IY	th	е	m	?
---	---	---	----	----	---	---	---

Precision	True Positives	N. of Correctly Predicted Positive Instances		
	True Positives + False Positives	N. of Total Positive Predictions you Made	-accurate	
Recall	True Positives	N. of Correctly Predicted Positive Instances	identified	
	True Positives + False Negatives	N. of Total Positive Instances in the Dataset	-identined	
F1 acore	Precision * R	ecall	h a law a a d	
F I-SCOLE	Precision + R	-balanced		

https://towardsdatascience.com

Thanks for Listening!

Q & A

